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Abstract
Artificial gauge fields the control over the dynamics of uncharged particles by engineering the potential landscape
such that the particles behave as if effective external fields are acting on them. Recent years have witnessed a growing
interest in artificial gauge fields generated either by the geometry or by time-dependent modulation, as they have
been enablers of topological phenomena and synthetic dimensions in many physical settings, e.g., photonics, cold
atoms, and acoustic waves. Here, we formulate and experimentally demonstrate the generalized laws of refraction and
reflection at an interface between two regions with different artificial gauge fields. We use the symmetries in the
system to obtain the generalized Snell law for such a gauge interface and solve for reflection and transmission. We
identify total internal reflection (TIR) and complete transmission and demonstrate the concept in experiments. In
addition, we calculate the artificial magnetic flux at the interface of two regions with different artificial gauge fields and
present a method to concatenate several gauge interfaces. As an example, we propose a scheme to make a gauge
imaging system—a device that can reconstruct (image) the shape of an arbitrary wavepacket launched from a certain
position to a predesigned location.

Introduction
Snell’s law and the Fresnel coefficients are the corner-

stones of describing the evolution of electromagnetic
waves at an interface between two different media. By
cascading several such systems, each with its own optical
properties, it is possible to design complex structures that
give rise to various important devices and systems, such as
lenses, waveguides1, resonators, photonic crystals2, and
even localization phenomena, when random interfaces are
involved3. The behavior of waves in the presence of an
interface can exhibit fundamental features, e.g., total
internal reflection (TIR), back-refraction for negative-

positive refraction index interfaces4,5, and even confine-
ment of states to the interface itself, such as Tamm and
Shockley states6,7, plasmon polaritons8,9, Dyakonov
states10,11 and topological edge states12–14. Traditionally,
the Fresnel equations describe the reflection and trans-
mission of electromagnetic waves at an interface separ-
ating two media with different optical properties. These
can be two materials with different permittivities or two
different periodic systems (photonic crystals) composed of
the same material, e.g., an interface between two dissim-
ilar waveguide arrays15. However, an interface can also
separate two optical systems that differ only by the arti-
ficial gauge fields created in them. Generally, such a
“gauge interface” marks a different dispersion curve on
either side of the interface; hence, it must affect the
transmission and reflection at the interface.
Gauge fields (GFs) are a basic concept in physics

describing forces applied on charged particles. Artificial
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GFs are a technique for engineering the potential land-
scape such that neutral particles will mimic the dynamics
of charged particles driven by external fields. With the
advent of the particle-wave duality, artificial GFs have
been demonstrated to act on photons16–19, cold
atoms20,21, acoustic waves, etc. These artificial GFs are
generated either by the geometry17 or by time-dependent
modulation18 of system parameters. With the growing
interest in topological systems22, which necessitate
GFs23,24, it was suggested that the interface between two
regions of the same medium but with different GFs in
each region can create an effective edge. In these systems,
both sides of the interface have the same basic dispersion
properties, altered only by applying a different GF on each
side. Such a gauge edge was employed to demonstrate
analogies to the Rashba effect25, optical waveguiding26,27,

topological edge states28,29 and back-refraction30. In the
presence of a different GF on either side of the interface,
the trajectories of waves crossing from one side to the
other are governed by the symmetries in the system,
which are expected to result in an effective Snell’s law,
whereas the reflection and transmission coefficients arise
from the specific boundary.
Here, we theoretically and experimentally demonstrate

the effective Snell law governing the reflection and
transmission of waves at an interface between regions of
the same photonic medium, differing only in the artificial
gauge fields introduced on either side. We show how the
transverse momenta of the reflected and transmitted
waves change according to the interfacial change in the
gauge field, and demonstrate TIR and complete trans-
mission. Subsequently, we provide an approximate
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Fig. 1 Sketch of our artificial gauge interface. Two rectangular arrays of waveguides (red: upper array, blue: lower array) are stacked on top of each
other, creating an artificial GF interface in the y-direction. The waveguide arrays are tilted by 2η with respect to each other. Otherwise, the parameters
for the two arrays are identical. a Front view. b Top view. The dashed box represents one unit cell in the x–z-plane in the upper array. c SEM image of
the inverse fabricated waveguide sample from the side. The inset shows a magnified region to visualize the hollow waveguides. d Microscope image
of the infiltrated sample from the top
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calculation for the Fresnel coefficients for our example
and explain how to generalize the concepts. Finally, we
show how to concatenate several “gauge interfaces” and
propose a design for a gauge-based imaging system—a
device composed of several interfaces between different
gauge fields, acting to reconstruct (image) an arbitrary
paraxial input wavepacket at a predetermined plane.

Results
For simplicity, consider first a simple system constitut-

ing an artificial gauge interface: two 2D arrays of eva-
nescently coupled waveguides, where the waveguides in
each array follow a different trajectory along the propa-
gation axis z (Fig. 1). This model system serves to explain
the ideas involved, which are later generalized. The GFs in
our system are a direct result of the trajectories of the
waveguides and do not require any temporal modulation
of the materials at hand. The upper array experiences a
constant tilt in the x-direction from the propagation axis
z, with a paraxial angle η such that x(z)= x′+ ηz (para-
xiality allows sin η≃ η, where x′ is the original x-position),
while the lower array is tilted by −η (Fig. 1a). These two
arrays combined exhibit different artificial GFs that can-
not be gauged away by a coordinate transformation. The
propagation of light in this structure is described by the
paraxial wave equation

i∂zψ ~rð Þ ¼ � 1
2k0

∇2
?ψ ~rð Þ � k0

n0
Δn ~rð Þψ ~rð Þ ð1Þ

Here, ψ is the envelope of the electric field, k0 is the
optical wavenumber inside the bulk material, n0 is the
ambient refractive index, Δn ~rð Þ ¼ n ~rð Þ � n0 gives
the relative refractive index profile, and ∇2

? ¼ ∂2x þ ∂2y .
Eq. (1) is mathematically equivalent to the Schrödinger
equation, where z plays the role of time, and Δn ~rð Þ plays
the role of the potential. This analogy between the
paraxial wave equation and the Schrödinger equation has
been used many times in exploring a plethora of
fundamental phenomena, ranging from Anderson locali-
zation31 and Zener tunneling32 to non-Hermitian poten-
tials33 and Floquet topological insulators23.
The basic building block in our system is a two-

dimensional array of evanescently coupled straight
waveguides, i.e., Δn ~rð Þ is a periodic function in both x and
y, with periods ax and ay, respectively, such that each unit
cell consists of a single waveguide.
Consider first an array where the trajectories of all the

waveguides are in the z-direction. Following coupled
mode theory25, the spectrum of light propagating in such
a 2D array of waveguides is given by

β kx; ky
� � ¼ β0 þ 2cx cos kxaxð Þ þ 2cy cos kyay

� � ð2Þ

where β is the propagation constant of an eigenmode,
defined by ψ x; y; zð Þ ¼ ψ0 x; yð Þe�iβz , kx and ky are the
spatial momenta of the mode in the x- and y-directions, cx
and cy are the coupling strengths between adjacent
waveguides in the x- and y-directions (taken to be real
negative numbers according to standard solid state
notation) and β0 is the propagation constant of the
guided mode in a single isolated waveguide. Consider now
an array of waveguides tilted at an angle η with respect to
the z-axis such that the waveguides follow a trajectory
defined by x− ηz= constant. The dynamics in an array of
tilted waveguides are expressed by an artificial GF, given
by the effective vector potential ~A zð Þ ¼ �k0ηx̂, with the
following spectrum25,27:

βη kx; ky
� � ¼ β0 þ 2cx cos kx � k0ηð Þaxð Þ þ ηkx

� 1
2
k0η

2 þ 2cy cos kyay
� � ð3Þ

The shift of k0η in the cosine is the compensation due
to the Galilean transformation of the waveguides. The
linear ηkx shift term appears because the spectrum in Eq.
(3) is expressed in the laboratory frame and not in the
frame of reference in which the waveguides are sta-
tionary. The constant offset 1

2 k0η
2 results from the

effective elongation of the optical path inside the tilted
waveguides.
Such a linear tilt of a waveguide array is, in itself, a

trivial gauge field, as we can eliminate its effects by
changing the frame of reference to the co-moving frame,
i.e., a linear coordinate transformation of the entire sys-
tem can gauge it out. This can also be understood by
examining the arising effective magnetic field ~B ¼ ~∇ ´~A,
which is zero for a constant vector potential ~A. To have a
nontrivial gauge, we need the effective gauge field to be
nonuniform (i.e., have either space or time dependence).
Such a nontrivial gauge is achieved by coupling two 2D
arrays, each with a different tilt angle and therefore a
different gauge. Then, it becomes impossible to gauge
away the effect of the tilt when we combine two such
fields with different tilts. There is no coordinate system in
which both arrays would be simultaneously untilted27.
Here ~A ¼ ηk0bx at the upper section, and ~A ¼ �ηk0bx at the
lower section.
With this in mind, consider a two-dimensional array of

evanescently coupled waveguides divided into two regions
—top and bottom, as shown in Fig. 1a. The rows of
waveguides in the top and bottom regions are identical in
every parameter except for the tilt. The overall GF is then
given by

~A ~rð Þ ¼ 2Θ yð Þ � 1ð Þηk0x̂ ð4Þ

Cohen et al. Light: Science & Applications           (2020) 9:200 Page 3 of 11



where Θ(y) is the Heaviside function, which is 1 when y >
0 and zero otherwise. This vector potential gives an
effective magnetic field ~B ¼ �2δ yð Þηk0ẑ with a ΦB ¼
�2ηk0ax magnetic flux through a unit cell at the interface.
The different gauge fields in each subsystem result in a

different band structure (dispersion relation) for each
subsystem. The system has discrete symmetries in both
the x- and z-directions, with periods of ax and ax

2η,
respectively (see Supplementary Information). Each of
these dictates a conservation law for the respective
momentum (up to 2π over the period), leaving only ky to
be modified as a wave crosses between the two regions.
Thus, launching an eigenmode (a Bloch wave) with a
defined wavevector (kx, ky,inc) on one side of the system
will result in refraction and reflection of the wave upon
incidence at the interface. According to the x- and z-
translational symmetries of the joint lattice, the wave-
number in the second half plane will have to satisfy

βη kx; ky;inc
� � ¼ β�η kx; ky;tran

� � ð5Þ

where ky,inc is the y-wavenumber of the incident beam, ky,tran is
the y-wavenumber of the transmitted beam, and βη(kx, ky,inc)

is given by Eq. (3). Equation (5) acts as a generalized Snell
law for an interface between two regions of the same
medium but with different artificial gauge fields on each
side in the specific realization of titled photonic lattices.
Note that Eq. (5) is general and valid for any interface

that satisfies the symmetries in x and z (the plane normal
to the interface), even for a uniform dielectric medium.
The main difference between refraction from a dielectric
interface and refraction from an AGF interface lies in the
dispersion relation, that is, the relation between the pro-
pagation constant β and the frequency. In uniform

dielectrics, a plane wave (which is an eigenmode of the

medium) obeys βdielectric ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nω
c

� �2 �ðk2x þ k2y Þ
q

. On the

other hand, for an AGF medium, the dispersion can be

designed as almost any desired relation34,35. In the specific
case of tilted waveguide arrays, the dispersion relation is
given by Eq. (3). The ability to design the dispersion
allows for interesting dynamics such as a negative group
velocity for some kx values, for example,
2cxax sin kx � k0ηð Þaxð Þ<�η for the case of tilted wave-
guide arrays. Engineering the dispersion relation also
makes it possible to cancel diffraction in one of the
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Fig. 2 Dispersion relations for the upper (red) and lower (blue) arrays. a Projection of β as a function of kx. The solid lines mark some specific
values of kyay. In the kx-range where the two bands overlap, any wavepacket traveling across the artificial gauge interface undergoes refraction
according to the generalized Snell law (shaded gray region). Outside this range, total internal reflection (TIR) occurs. Note that the kx-range for total
reflection (unshaded region) is not necessarily symmetric around kx= 0 (see vertical dashed lines, for a given ky). The parameters here are the same as
in the experiment: r= 0.52 μm, ax= 1.69 μm, ay= 2.15 μm, η= 0.0093, and λ= 700 nm. b Full 3D dispersion relation β as a function of kx and ky.
c Contour plot of the equi-β over kx and ky for the red band. Each line represents an equi-β contour. The group velocity of a wavepacket at each point
is perpendicular to the equi-β contour that goes through that point
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directions, as we suggest in the “Discussion” section
(Fig. 7). Notably, uniform dielectric interfaces require
materials with different optical properties on each side of
the interface, whereas an AGF interface can be engineered
even when both sides have the same optical properties (up
to their gauge), achieving refraction using the same
materials of the same composition and configuration
(periodicity).
Figure 2 shows the band structures for the upper (red)

and lower (blue) waveguide arrays. Depicted in three
dimensions (Fig. 2b), we note the sinusoidal shape of the
dispersion along kx as well as along ky. The projection
onto the kx-component (Fig. 2a), however, helps us dis-
play the ky-conversion between the two arrays. In the
projected band structure, each band represents the values
of β (which plays the role of energy in the analogy to the
Schrödinger equation) for all values of ky associated with
that band (see the Supplementary Information for a dis-
cussion on band replicas arising from the periodicity of
the structure in x and z). As an example, the solid lines in
Fig. 2a indicate the values of β associated with some
specific ky. Note that the kx-range for total reflection
(dashed vertical lines in Fig. 2a) is not necessarily sym-
metric around kx= 0 (for a given ky). From this figure, it
may seem that β is not periodic in kx, but a closer look at

the symmetries in the system reveals that the periodicity is
maintained (see the discussion in the Supplementary
Information). Figure 2c displays a contour plot of equi-β
as a function of kx and ky. The group velocity of a wave-
packet at each point is perpendicular to the equi-β con-
tour that goes through that point.
When a wavepacket crosses the artificial GF interface

between the lower array and the upper array, β is conserved
such that βη kx; ky;inc

� � ¼ β�η kx; ky;tran
� �

, as is the transverse

wavenumber, kx,inc= kx,tran= kx. Graphically, this means
that at this value of β the red and blue bands in Fig. 2a
overlap. The quasi-energy β of the red band may belong to a
different ky than that of the blue band; thus, ky,inc ≠ ky,tran
(see solid colored lines in Fig. 2a). Therefore, when the light
crosses the artificial GF interface, ky,inc must change
according to

cosðky;tran ayÞ � cos ky;inc ay
� �

¼ cx
cy

cos kx þ k0ηð Þaxð Þ � cos kx � k0ηð Þaxð Þ½ � � η
kx
cy

ð6Þ

We identify three different regimes, which depend on kx:
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Fig. 3 Simulated dynamics of beams in the three regimes. Total transmission (upper row), refraction and reflection (middle row), and total
internal reflection (bottom row). Each panel shows the numerically calculated intensity distributions at three different z-values along the propagation
direction: input facet (left column), z= 600 μm (middle column) and z= 1900 μm (right column). The dashed white line indicates the location of the
gauge interface. The initial y-wavenumber is always ky,incay= 0.5π. a–c An input beam with kxax= 0 is transmitted completely across the interface.
d–f An input beam with kxax= 0.4π is partially reflected and partially refracted at the interface. The refraction is highlighted by the change in the
trajectory. g–i An input beam with kxax= 0.8π undergoes total reflection, never crossing the interface. The intensity is normalized separately in each
panel, and the intensity in the second and third rows is enhanced for better visibility. The arrows are guides to the eye and indicate the approximate
trajectories of the respective beams
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1. Total internal reflection (TIR): kx is such that the
blue and red bands do not intersect, hence no
coupling from the upper to the lower array (and vice
versa) is possible. Consequently, the wavepacket is
completely reflected (see Fig. 3g–i).

2. Perfect transmission for kx= 0: A wavepacket
crosses the interface between the two arrays
without changing its wave vector components
while allowing all the light to be transmitted
through the interface (see Fig. 3a–c).

3. Refraction and reflection for all other values of kx:
The red and blue bands intersect, but for different ky,
inc and ky,tran. As the “energy” β and the transverse
wavenumber kx are conserved, ky has to change
upon crossing the interface, resulting in both a
refracted wave and a reflected wave (Fig. 3d–f).

Examples of the dynamics of waves in these three
regimes are given in Fig. 3, which shows the results of
direct simulations of Eq. (1) (using the commercial
OptiBPM code), with parameters corresponding to those
used in the experiments. The figure shows the intensity of
optical beams at three different propagation planes along
z. We probe the three different regimes by launching
input beams with a set ky,inc ay= 0.5π and selecting kxax
corresponding to total transmission (kxax = 0), refraction
and reflection (kxax= 0.4π), and total internal reflection
(kxax= 0.8π). Upon excitation at z= 0 μm (Fig. 3a, d, g),
the beams travel toward the interface (indicated by the
dashed white line), reaching it approximately after z=
600 μm (Fig. 3b, e, h). For the input beam with kxax= 0,
the beam is completely transmitted across the interface
(Fig. 3c) without any reflection. After passing through the
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interface, the beam strongly disperses (diffracts) in the x-
direction. For the input beam with kxax= 0.4π, part of the
beam is reflected by the interface, returning to the lower
array, while part of it is refracted, as indicated by the
change in the slope of the arrow (Fig. 3f). For the beam
with kxax= 0.8π, the beam undergoes total reflection,
never crossing the interface (Fig. 3i).
Having used symmetry and the dispersion relation to

find the general laws of refraction and reflection at a
gauge interface, the next step is natural: finding the
coefficients for reflection and transmission. However,
similar to the Fresnel coefficients at a dielectric interface,
this calculation is system specific, and the details depend
on the interface between the two regions. That is, unlike
the Snell-like law, the Fresnel coefficients cannot be
generalized (conservation of power yields a relation
between the absolute values of the Fresnel coefficients,
but to obtain the coefficients, one must also employ
continuity at the interface). With this in mind, we cal-
culate the Fresnel-like coefficients for our example of a
gauge interface constructed from titled waveguides. We
use an approximate model27 for the coupling between
the two sections and derive an approximate formula for
the coefficients. The details of the calculation are pre-
sented in the Supplementary Information. Figure 4 shows
the Fresnel-like coefficients for our gauge interface for
parameters corresponding to those shown in Fig. 3. We
plot the amplitude and phase of the transmitted and

reflected parts for ky,inc ay= 0.4π as a function of kx and
for kxax= 0.4π as a function of ky,inc (Fig. 4c, d, respec-
tively). As explained above, the Fresnel coefficients are
highly dependent on the specifics of the interface; hence, a
different model for the gauge field interface will yield
different coefficients. However, the Snell-like law of
refraction will not change, as it depends only on the
symmetry and the dispersion relations on both sides of
the interface.
To demonstrate the generalized Snell’s law in experi-

ments, we fabricate sets of tilted optical waveguides cor-
responding to the system described in Fig. 1. The samples
are fabricated using direct laser writing to create hollow
waveguides, which are subsequently infiltrated with a
higher index material (Fig. 1c, d). For details on the fab-
rication, see ref. 36. The experimental measurement setup
is sketched in Fig. 5. We reflect a 700 nm laser beam off a
spatial light modulator (SLM) to excite a Bloch mode with
a given ky,inc while exciting the entire first Brillouin zone
in x (i.e., −π ≤ kxax ≤ π). To do this, the beam reflected off
the SLM37 is shaped such that after a Fourier transform
(by a microscope objective), it consists of 5 lobes, with
their phase forming a linear ladder, commensurate with
the chosen Bloch mode, while in x, the beam is simply
focused into a single row of waveguides. The beam passes
through the sample, and the output facet is imaged
by a camera. Since we are interested in investigating the
passage through the gauge interface, we scan the value of
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Fourier

transform

Fig. 5 Experimental setup. A laser beam (wavelength 700nm) is reflected off an SLM, which imprints a specific phase and amplitude pattern onto
the beam. To shape the amplitude while using a phase-only SLM, we overlay the phase pattern on the SLM with a blazed grating that shifts parts of
the reflected light into the first diffraction order37. After Fourier transform by an objective, the beam consists of five spots with a phase difference of
ky,incay between each of them and a Gaussian amplitude envelope (inset). These spots are focused onto a row of waveguides below the interface, as
shown by the false color photograph of the beam on top of the sample, with the interface marked by the dashed line. The light then propagates
along z, interacts with the interface, and exits the sample after a propagation distance of z= 725 μm. The intensity distribution at the output facet is
imaged by a camera, as is its spatial power spectrum (obtained by inserting an extra lens at the focal distance to the camera)
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ky,inc by changing the relative phase between the lobes
while exciting the entire first Brillouin zone in x. Figure 5
shows a false color photograph of the input beam overlay a
photograph of the sample, with the interface marked by
the dashed line. The light propagates across the interface,
and we measure the intensity of the refracted and reflected
waves at the output facet of the sample, as well as the
intensity at the Fourier plane (obtained at the focal plane
of a lens), which corresponds to the spatial power
spectrum.
Figure 6 shows the spatial power spectrum (Fourier

space intensity) of the waves exiting the sample for an
input wave with different ky,inc values but always launched
at the same position in y, along with a comparison to
beam-propagation simulations. The analytically calculated
values for ky,tran obtained by Eq. (6) are marked by the
green and blue dots on top of the experimental and
simulated results. The beam travels toward the artificial
GF interface with a group velocity vgy, obtained from the
dispersion relation in Eq. (3) by taking the derivative with
respect to kyay. In the first row (Fig. 6a, b), the beam is
launched such that it moves away from the interface (kyay=
−0.6π), and never reaches the interface; hence, the output
beam has the same spatial spectrum as the input beam. As
Fig. 6a, b show, the power spectrum of the output beam is
located around the same kyay=−0.6π as the input beam.
In the second row (Fig. 6c, d), the beam is launched with
kyay= 0.1π. As these panels show, the output beam is
split: for −0.1π < kxax < 0.6π, the beam is transmitted and
displays distinct refraction, according to the generalized
Snell’s law expressed by Eq. (6), while in the regions
beyond this range, the beam experiences TIR. Note the
prominent asymmetry between the minimal and maximal
kx boundaries between the regions of transmission and
TIR. In experiment (c), the measurement only partially
shows the results, as the group velocity in y for kyay= 0.1π
is very low, and the beam has only partially passed the
interface even upon reaching the output facet of the
sample. In the third row, Fig. 6e, f, the beam is launched
with kyay= 0.5π. For −0.5π < kxax < 0.5π, the beam is
transmitted, while beyond this range, the beam experi-
ences TIR. Here, the asymmetry between the minimal and
maximal kx boundaries between transmission and TIR is
less significant. The experiment (Fig. 6e) captures both
the refraction and TIR regions. In the fourth row, Fig. 6g,
h, the beam is launched with kyay= π. For −0.7π < kxax <
−0.1π, the beam is transmitted. Beyond this domain, the
beam experiences TIR. Here, both the incident and
reflected beams have the same |ky|. This case is similar to
prism coupling at a grazing angle to couple a beam into a
waveguide where it will be bound by TIR.
The comparison of the experimental measurements and

numerical calculations with the analytical Eq. (6) (dots
in Fig. 6) shows good agreement for the refracted part.
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Fig. 6 Refraction and reflection by an artificial gauge interface.
Spatial power spectrum (intensity in Fourier space) for an input wave
with several values of ky,inc always launched at the same position in
y. The left and right columns depict the experimental and simulated
results, respectively. The purple dashed line shows the location of the
input beam in Fourier space and the dots show the values analytically
calculated from Eq. (6) (green for refraction and blue for TIR). For ky,inc
ay=−0.6π, the beam travels away from the interface and does not
refract at all (a, b), while for the other panels (c–h), we see both partial
refraction and reflection. In the second row (c, d), the beam is
launched with kyay= 0.1π. As these panels show, the output beam is
split: for −0.1π < kxax < 0.6π, the beam is transmitted and displays
distinct refraction, according to the generalized Snell’s law expressed
by Eq. (6), while in the regions beyond this range, the beam
experiences TIR. Note the prominent asymmetry between the minimal
and maximal kx boundaries between the regions of transmission and
TIR. In the third row (e, f), the beam is launched with kyay= 0.5π. For
−0.5π < kxax < 0.5π, the beam is transmitted, while beyond this range,
the beam experiences TIR. The experiment (e) captures both the
refraction and TIR regions. In the 4th row, (g, h), the beam is launched
with kyay= π. For −0.7π < kxax < 0.1π, the beam is transmitted. Beyond
this domain, the beam experiences TIR. Here, both the incident and
reflected beams have the same |ky|. Altogether, the comparison of the
measurements (left row), simulations (right row), and analytical
expression from Eq. (6) (green and blue dots) shows good agreement
with the expected ky,tran-distribution. A movie showing the complete
set of measurements can be found in Supplementary Movie no. #1.
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As expected, the obtained k-distribution is broader than
the analytical curve due to finite size effects. Namely, the
input beam with ky,inc has a finite width (see Fig. 5) of five
waveguides. The more waveguides are excited in real
space, the smaller the width of the k-component in
Fourier space. However, we do not want the input pattern
to excite waveguides in the other array across the artificial
GF interface; hence, we have to limit the size of the input
beam. In addition, the center position of the input pattern
needs to be close enough to the artificial GF interface such
that the beam can travel across the artificial GF interface
in the given propagation distance. Therefore, we need to
limit the number of excited waveguides. For excitation of
five waveguides, the width is Δky,inc ay ≈ 0.4π (see Fig. 6).
As the same number of illumination spots is chosen in the
experiments, the numerical calculation reflects the
experimental conditions very well. Altogether, the com-
parison of the measurements, simulations, and analytical
expression shows good agreement with the expected ky,
tran-distribution. A movie showing the complete set of
measurements can be found in Supplementary Movie #1.

Discussion
Having demonstrated the Snell law for refraction and

reflection at an interface between two different artificial
GFs, we move on to concatenating several gauge inter-
faces and constructing devices. As an example high-
lighting the possibilities that refraction by artificial GFs
allows, we design a gauge-based imaging system. By rea-
lizing such a system with arrays of tilted waveguides, we
design a scheme that maps any (arbitrary) wavepacket
input at the input facet to the output facet. In the scheme

based on waveguide arrays, this corresponds to a system
with different rows of waveguides tilted at different angles
(Fig. 7a) mapping an input state from row y0 to row yimage.
For every row of waveguides with a tilt η(y) positioned at
y, we find the propagation constant βη yð Þ ¼ β0 þ
2cx cos kx � k0η yð Þð Þaxð Þ þ η yð Þkx � 1

2 k0η
2 yð Þ: To produce

an image, we need the phase accumulation by all com-
ponents to be identical. Thus, we require that when a
wavepacket diffracts along y and propagate along z from
input row y0 to output row yimage, the cumulative phase
accumulation for each of its kx constituents is the same.
Therefore, the value of

R yimage

0 βη yð Þ kxð Þdy should not
depend on kx. This can be written as

d
d kxð Þ

Z yimage

0
βη yð Þ kxð Þdy ¼ 0 ð7Þ

This requirement can be fulfilled in a 2D array of
straight waveguides, where each row (y) is tilted at a dif-

ferent angle such thatη yð Þ ¼ η0 sin
2πy
yimage

� �
. The require-

ment in Eq. (7) can be expressed by

Z 2π

0
exp �ik0η0ax sin y0ð Þ� �

dy0 ¼ J0 k0η0ax
� � ¼ 0 ð8Þ

where J0 is the zeroth-order Bessel function and y0 ¼ 2πy
yimage

is now unitless. In other words, by designing the tilt of
each row properly, an arbitrary wavepacket f(x) at row y=
0 is reproduced at row yimage (apart from a global phase).
Figure 7a shows a sketch of the gauge-imaging waveguide
structure. Each row has a different tilt angle
η yð Þ ¼ η0 sin

2π y�y0ð Þ
yimage�y0

� �
. Figure 7b compares the amplitude
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Fig. 7 Gauge-based imaging system. a Sketch of a gauge-based imaging system. The tilt angle η for each row as a function of y is given by

η yð Þ ¼ η0 sin
2π y�y0ð Þ
yimage�y0

� �
. We launch the beam at y0 and expect it to reconstruct at yimage. In the calculations, we assume a periodicity in x of 32

waveguides. b, c The amplitude (pink) and phase (light blue) at y= y0 and z= 0 (squares) compared to the amplitude (red) and phase (dark blue) at
y= yimage (circles). b The system parameters satisfy Eq. (8), and reconstruction in both the amplitude and phase is achieved. The output distance z is
chosen such that the maximal total power is obtained at the image plane (which occurs at z= 1000 μm). c The system parameters are the same as in
(b) except for η0 such that now, it does not satisfy Eq. (8). Even at the z with the best fit by cross-correlation (z= 926 μm), the original signal differs
completely from the output signal
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and phase of the wavepacket launched at y= y0 and z= 0
(pink and light blue) to those of the imaged one at y=
yimage and z= 1000 μm (red and dark blue), revealing that
the final and initial wavepackets are essentially the same.
One should note that the beam diffracts in y as it
propagates along z; hence, the imaging is one-dimensional
for the field distribution in x only. Therefore, the intensity
reaching the row at yimage is limited by the 1D discrete
diffraction in z such that the intensity at each row

(neglecting back reflections) is given approximately by

jJΔy
ay
f zð Þð Þj2, where f(z) is a function of z that depends on

the details of the coupling and JΔy
ay
is the Bessel function of

the order of row number Δy
ay
. In our simulated example,

there are 29 rows of waveguides between y0 and yimage, so

the maximal intensity that can propagate to yimage is
limited to max J29j j2� 4:7% of the initial intensity. In
practice, we obtain approximately 2.9% due to back
reflections (in y) and slightly different effective couplings
along y for each kx component. In the simulation, we
assume that the structure is periodic in x with a period of
32 waveguides. The output facet is chosen to support
maximal total power at the imaging row. Figure 7c uses
the same system as Fig. 7b, changing only the size of η0
such that Eq. (8) is no longer fulfilled. We simulate the
propagation of the same wavepacket in this (non-imaging)
structure up to the distance that gives the maximal cross-
correlation between the input and the output, which
occurs at z= 926 μm, yet it is clear that the input and
output wavepackets do not overlap. Essentially, with
proper design of this simple gauge-based imaging system,
we can transfer an arbitrary wavepacket from an initial
row at the input facet of the structure to a preselected row
at the output facet. This idea works well as long as the
Bloch mode spectrum in x never projects onto evanescent
modes (generated by TIR) throughout the propagation.
This example, albeit simple, demonstrates that it is
possible to construct various optical devices and systems
by engineering artificial gauge fields using just one
dielectric material.
To summarize, we derived the laws of refraction and

reflection at an interface between two regions differing
solely by their artificial gauge fields and demonstrated
the concepts in experiments in 3D-micro-printed optical
waveguide arrays. Generalizing the concepts of refraction
and reflection at a gauge interface offers exciting possi-
bilities for routing light and more generally for con-
structing photonic systems in a given medium strictly by
designing the local gauge. As an example, we proposed
an imaging system that maps any input state from one
place at the input facet to a predesignated other location
at the output facet by cascading different artificial gauge
fields.
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